19. James H. Wilson, A Compton scattering experiment to test the shape of the Dirac electron’s center of charge oscillating shell

$25.00 each

For purchase of this item, please read the instructions

 

 

Volume 29: Pages 402-409, 2016

 

 

A Compton scattering experiment to test the shape of the Dirac electron’s center of charge oscillating shell

 

 

James H. Wilsona)

 

 

Jove Sciences, Inc., 3834 Vista Azul, San Clemente, California 92672, USA

 

 

Current experimental results [M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63 (2001)] claim that the electron is a static point particle of very small spatial extent. However, a previous paper [J. H. Wilson, Phys. Essays 28, 1 (2015)] showed that the Dirac equation implies that the free electron is actually a stable fluctuation in the vacuum with spatial extent of approximately its Compton wavelength, where the Center of Charge (CoC) intrinsic coordinate (IC) oscillates rapidly around the electron’s Center of Mass (CoM) coordinate. Unlike the free Quark detection dilemma where it is almost impossible to observe a “free” Quark, the free electron is easy to observe, but “only seems as though” it is a point particle with intrinsic characteristics such as spin and angular momentum. For nonrelativistic CoM speeds, it is very difficult to differentiate a static point electron from the electron’s CoC shell, which is spherical in shape. If the external electromagnetic field used to “measure” the free electron’s position is too strong, the free electron is destroyed in a cloud of electron/positron pair creations and annihilations in the measurement process. In this and a previous paper [J. H. Wilson, Phys. Essays 28, 1 (2015)], two elastic scattering experiments are proposed to detect the extended spatial structure of the free electron without destroying its free single particle nature in the observation process. By definition, an electron is no longer free when one measures its position, momentum, or other properties, but using low-energy “elastic” scattering of photons by electrons keeps the single particle, free electron assumption approximately true. In this paper, we apply the Dirac Electron model (DEM) to Compton scattering where elastic scattering can be assumed, and the Compton scattering angles of incoming photons will be slightly different if the electron CoC shell is an oblate steroid, flattened in the direction of CoM motion, rather than a static point or perfect sphere. The experimental state-of-the-art for elastic scattering currently will allow the isolation of a single free electron for the purposes of the experiment proposed. The theory for this experiment will begin with a closer examination of the free electron’s IC Lorentz like transformation properties. Finally, a natural, but speculative, explanation for the entanglement of an electron/positron pair traveling further apart in a vacuum is discussed. The phase of a DEM electron and DEM positron are opposite in time so they destroy each other in pair annihilation, but their opposite phases are locked forever across vast spatial domains after pair creation. When the electron spin is measured, the electron phase is flipped, and it is well known that the electron phase speed travels at c2/vCoM, faster than the speed of light. If the electron/positron entangled pair is traveling at c/10, the phase speed is ten times the speed of light. The electron phase has been totally ignored previously as not physical, because it always travels faster than the speed of light. Clearly, the measurement called for is to measure the spin of the positron before the phase flip from the electron spin measurement has time to arrive at the positron position. The author feels that the entanglement measurements may not yet be capable of making this measurement, because c2/vCoM is so fast for nonrelativistic CoM electron and positron speeds.

 

 

Les résultats des expériences actuelles [M. I. Eides, H. Grotch, and V. A. Shelyuto, Physics Reports 342, 63 (2001)] stipulent que l’électron est une particule ponctuelle statique. Cependant dans un article antérieur [J. H. Wilson, Phys. Essays 28, 1 (2015)] on montre que l’Equation de Dirac implique que l’électron libre représente en fait une fluctuation stable dans le vide avec une distance spatiale d’approximativement sa longueur d’onde Compton, où la coordonnée intrinsèque du Centre de Charge (CoC) oscille rapidement autour de la coordonnée du Centre de Masse (CoM) de l’électron. A l’opposé du dilemme de détection du Quark libre où il est presque impossible d’observer un Quark libre, l’électron libre est facile à observer, mais il semble être un point-particule à caractéristiques intrinsèques, tels le spin et le moment angulaire. Pour des vitesses CoM non-relativistes, il est pénible de différencier entre un électron de point statique et la couche CoC de l’électron qui a une forme sphérique. Si le champ extérieur électromagnétique (EM) qui mesure la position de l’électron libre est trop fort, l’électron libre est détruit dans une série de productions en paire éléctron/ positron et d’annihilations au cours de la mesure. Dans le présent article et l’article antérieur [J. H. Wilson, Phys. Essays 28, 1 (2015)], nous proposons deux expériences élastiques pour détecter la structure spatiale extensive de l’électron libre sans détruire sa caractéristique de particule individuelle libre au cours de l’observation. Par définition, un électron cesse d’être libre dès qu’on mesure sa position, son moment ou autres propriétés, mais la diffusion élastique à énergie basse des photons par les électrons maintient l’hypothèse de l’électron libre et de la particule individuelle approximativement vraie. Dans cet article, nous appliquons le DEM (Modèle d’Electron Dirac) sur la diffusion Compton où on peut présumer une diffusion élastique et les angles de diffusion Compton des photons intervenants seront légèrement différents si la couche CoC de l’électron est un sphéroïde aplati dans la direction de mouvement du CoM, plutôt qu’un point statique ou une sphère parfaite. La diffusion élastique de pointe permet l’isolation d’un seul électron libre pour notre propos. La théorie pour notre expérience commencera avec une analyse des transformations de type Lorentz de la Coordonnée Intrinsèque (IC) de l’électron libre. Ensuite nous discuterons une explication naturelle mais spéculative pour l’intrication d’une paire électron/positron qui voyagent dans le vide. Les phases d’un électron DEM et d’un positron DEM sont opposées temporellement donc ils s’entre-détruisent dans une annihilation en paire, mais elles sont fixes dans l’espace après la production en paire. Quand on mesure le spin de l’électron, la phase de l’électron est renversée et il est bien connu que la vitesse de phase de l’électron est c2/vCoM, donc plus rapide que la vitesse de la lumière. Si la paire intriquée électron/ positron voyage avec c/10, la vitesse de phase est dix fois la vitesse de la lumière.La vitesse de phase de l’électron a été ignorée antérieurement car non-physique, car il voyage constamment plus rapidement que la vitesse de la lumière. Evidemment la mesure qui s’impose est la mesure du spin du positron avant que le renversement de phase résultant de la mesure du spin d’électron n’atteigne la position du positron. L’auteur estime que les mesures d’intrication ne seront pas encore capables de fournir cette mesure car c2/vCoM est très rapide pour des vitesses CoM de l’électron et positron non-relativistes.

 

 

Key words: Electron’s Center of Charge (CoC) Shell; Zitterbewegung; Static Point Electron; The Electron’s Internal Harmonic Oscillator; The Dirac Electron Model; The Electron as a Stable Fluctuation in the Vacuum; Compton Scattering; Entangled Electron/Positron Pairs.

 

 

Received: April 24, 16; Accepted: July 24, 2016; Published Online: August 20, 2016

 

 

a)This email address is being protected from spambots. You need JavaScript enabled to view it.